Almost Classical Skew Bracoids and the Yang-Baxter Equation

Isabel Martin-Lyons

Keele University, UK

The Interplay Between Skew Braces and Hopf-Galois Theory, Exeter 17th of April 2024

Aim

We will explore some concepts from Hopf-Galois theory as they pertain to skew bracoids and solutions to the Yang-Baxter equation.

Let E/K be a finite Galois extension of fields with L some intermediate field, so that L/K is separable but not necessarily Galois. Write $(G, \circ) = Gal(E/K)$ and $S = Gal(E/L)$.

Recall that Hopf-Galois structures on such extensions correspond to skew bracoids; the Galois group occurs as the multiplicative group and the type is encoded in the additive group.

1 [Reminder of Fundamental Defintions and Examples](#page-3-0)

1 [Reminder of Fundamental Defintions and Examples](#page-3-0)

Definition

A skew (left) brace is a triple (G, \star, \circ) , where (G, \star) and (G, \circ) are groups and for all $g, h, f \in G$

$$
g\circ (h\star f)=(g\circ h)\star g^{-1}\star (g\circ f).
$$

Definition

A skew (left) bracoid is a 5-tuple $(G, \circ, N, \star, \odot)$, where (G, \circ) and (N, \star) are groups and \odot is a transitive action of G on N for which

$$
g\odot(\eta\star\mu)=(g\odot\eta)\star(g\odot e_N)^{-1}\star(g\odot\mu),
$$

for all $g \in G$ and $\eta, \mu \in N$.

- \bullet We will frequently write (G, N, \odot) , or even (G, N) , for $(G, \circ, N, \star, \odot)$.
- We will refer to (N, \star) as the additive group and (G, \circ) as the multiplicative or acting group.
- Any identity will be denoted e, possibly with a subscript.

For example

Examples

- If (G, \circ) is a group then (G, \circ, \circ) and (G, \circ^{op}, \circ) are skew braces, the so-called trivial and almost trivial skew braces on G.
- Any skew brace (G, \star, \circ) can be thought of as a skew bracoid $(G, \circ, G, \star, \odot)$, where \odot is simply \circ . If (G, N) is a skew bracoid with $Stab_G(e_N)$ trivial we say that (G, N) is essentially a skew brace, since we can use the bijection $g \mapsto g \odot e_N$ to transfer the operation in G onto N to give a skew brace on N.
- For any group (G) we have the skew bracoid $(G, \{e\}, \odot)$ where of course the action \odot is trivial.

Examples

\n- Let
$$
d, n \in \mathbb{N}
$$
 such that $d|n$. Take $G = \langle r, s | r^n = s^2 = e, srs^{-1} = r^{-1} \rangle \cong D_n$ and $N = \langle \eta \rangle \cong C_d$. Then we get a skew bracoid (G, N, \odot) for \odot given by $r^i s^j \odot \eta^k = \eta^{i + (-1)^j k}$.
\n

Definition

We say that a skew bracoid (G, N, \odot) is reduced if and only if the action ⊙ of G on N is faithful.

From a Hopf-Galois perspective, this means that the "top" field was really the Galois closure of the one we are interested in.

Proposition

Let (G, N, \odot) be a skew bracoid, and K be the kernel of the map \mathcal{L}_{\odot} : $G \rightarrow Hol(N)$. We can form a skew bracoid $(G/K, N, \odot_K)$ which is reduced and \mathcal{L}_\odot and \mathcal{L}_{\odot_K} have the same image in Hol(N).

Examples

- Any skew bracoid that is essentially a skew brace is reduced since the action of the multiplicative group on the additive is regular and therefore faithful.
- Skew bracoids of the form $(G, \{e\}, \odot)$ are not reduced (unless G is itself trivial), since all of G is in $K = \text{ker}(\mathcal{L}_{\cap})$.
- In $(G, N) \cong (D_n, C_d)$, we see that (G, N) is reduced if and only if $d=n$, since $\langle r^d \rangle \subseteq K$ as $r^d \odot \eta^k = \eta^{d+k} = \eta^k.$

The γ [-function and solutions to the Yang-Baxter Equation](#page-18-0)

Definition

We say that a skew bracoid (G, N) contains a brace if the subgroup

 $S = \text{Stab}_G(e_N)$ has a complement H in G, so that $G = HS$.

This is equivalent to saying that G contains a subgroup H for which (H, N) is essentially a skew brace.

Definition

A skew bracoid (G, N) is almost a skew brace if the subgroup

 $S =$ Stab_G (e_N) has a normal complement in G, so that $G = HS \cong H \rtimes S$.

Definition

A skew bracoid (G, N) is almost classical if the subgroup $S = \text{Stab}_G(e_N)$ has a normal complement H in G, and when thought of as a skew brace, (H, N) is trivial.

This is saying that when the operation in H is transferred to N, it coincides with the original operation in N. Explicitly this means, for all $h_1, h_2 \in H$

$$
(h_1 \odot e_N)(h_2 \odot e_N) = h_1 h_2 \odot e_N,
$$

and consequently

$$
(h_1\odot e_N)^{-1}=h_1^{-1}\odot e_N.
$$

Proposition

Let (G, N) be a skew bracoid that contains a brace (resp. is almost a brace, is almost classical), then its reduced form $(G/K, N)$ also contains a brace (resp. is almost a brace, is almost classical).

Intuitively, when we quotient by K we only kill off part of the stabiliser, so our favourite H is preserved and we have $(H/K, N)$ as essentially a skew brace in $(G/K, N)$.

Unfortunately, the converse does not hold in general.

Remark

Let (G, N) be a reduced skew bracoid and suppose that there is some $H \subseteq G$ for which (H, N) is essentially a trivial skew brace, then (G, N) is almost a brace.

- Immediately, we have that H is a complement to $S = \text{Stab}_G(e_N)$ since H is regular on N .
- Normality is easiest to see via the holomorph, note that since (G, N) is reduced the map \mathcal{L}_{\odot} is injective. For $h \in H$ we have that $\mathcal{L}_{\odot}(h)$ coincides with $\mathcal{L}_*(h \odot e_N)$, so $\mathcal{L}_{\odot}(H) = \mathcal{L}_*(N)$ as permutation groups. Then $\mathcal{L}_*(N)$ is a normal subgroup of Hol(N) and therefore of G embedded into Hol(N). Finally, as $G \cong \mathcal{L}_{\odot}(G)$ we have that $H \cong \mathcal{L}_{\odot}(H) = \mathcal{L}_{\star}(N)$ is normal in G.

For example

Examples

- When thought of as skew bracoids, every skew brace is almost a skew brace, and every trivial skew brace is almost classical.
- Skew bracoids of the form $(G, \{e\}, \odot)$ are almost classical since they contain the brace $({e}, {e})$, ${e}$ is normal in G and $({e}, {e})$ is certainly trivial.
- Take $(\,G, N)\cong (D_n, C_n),$ then $S=\langle s\rangle$ since $s^j\odot\eta^0=\eta^{(-1)^j\cdot 0}$ and $r^i\odot e_{\mathsf{N}}=\eta^i$ so it is clear that $(\langle r\rangle,N)$ is trivial. We know $G \cong \langle r \rangle \rtimes \langle s \rangle$, hence (G, N) is almost classical.
- Recall Byott's example $(G, N) \cong (GL_3(\mathbb{F}_2), C_2 \times C_2 \times C_2)$ which we know to contain a brace, however it cannot be almost a skew brace since G is simple.

Theorem

Let (G, N, \odot_N) be a skew bracoid that is almost a skew brace due to H and write S for Stab_G(e_N). Suppose we also have a skew bracoid (S, M, \odot_M) . We may take the (external) direct product of N and M and, define

$$
\mathsf{hs}\odot(\eta,\mu):=(\mathsf{hs}\odot_{\mathsf{N}}\eta,\mathsf{s}\odot_{\mathsf{M}}\mu)
$$

for $h \in H$, $s \in S$ and $(\eta, \mu) \in N \times M$. This \odot is then an action, under which $(G, N \times M, \odot)$ is a skew bracoid.

Observe that to act on the M component, we are using the natural projection of G onto S.

Inducing a skew bracoid that contains a brace

Proposition

Let (G, N) and (S, M) be skew bracoids with $G = HS \cong H \rtimes S$. If (S, M) contains a brace then so does the induced skew bracoid $(G, N \times M)$.

Proof

Say (S, M) contains the brace (T, M) . Then HT is a subgroup of G, and

$$
ht\odot(e_N,e_M)=(h\odot_N e_N,t\odot_M e_M). \hspace{1cm} (1)
$$

Note H is transitive on N and T is transitive on M so HT is transitive on $N \times M$. The right hand side of [\(1\)](#page-17-0) is (e_N, e_M) if and only if $h = e_G$ and $t = e_G$, since both (H, N) and (T, M) are essentially skew braces. Hence $(HT, N \times M)$ is essentially a skew brace and $(G, N \times M)$ contains a brace.

[Almost classical skew bracoids](#page-10-0)

3 The γ [-function and solutions to the Yang-Baxter Equation](#page-18-0)

The γ -function

Definition/Proposition

Given a skew bracoid $(G, \circ, N, \star, \odot)$, we define the map γ : $(G, \circ) \rightarrow \text{Perm}(N, \star)$, sending g to γ_g , by

$$
\gamma_{\mathbf{g}}(\eta) = (\mathbf{g} \odot \mathbf{e}_{N})^{-1} \star (\mathbf{g} \odot \eta),
$$

for $g \in G$ and $\eta \in N$.

Then γ is in fact a homomorphism, with image in Aut (N, \star) . We call this map the γ -function of the skew bracoid.

Recall that this is the backbone of the route from a skew bracoid to a solution to the Yang-Baxter equation.

The γ -function of an almost classical skew bracoid

Let (G, N) be an almost classical skew bracoid with H such that $G \cong H \rtimes S$ and (H, N) is essentially a trivial skew brace.

Let $h \in H$ and $s \in S$, and $\eta = h_{\eta} \odot e_N \in N$ then,

$$
\gamma_{hs}(\eta) = (hs \odot e_N)^{-1} \star (hs \odot \eta)
$$

= $(h \odot e_N)^{-1} \star (hsh_\eta \odot e_N)$
= $(h^{-1} \odot e_N) \star (hsh_\eta s^{-1} \odot e_N)$
= $sh_\eta s^{-1} \odot e_N$.

So we conjugate by the S part and the H part acts trivially.

Example

In the
$$
G = \langle r, s \rangle \cong D_n
$$
 acting on $N = \langle \eta \rangle \cong C_n$ example we have

$$
\gamma_{r^i s^j}(\eta^k) = s^j r^k s^{-j} \odot e_N = \eta^{(-1)^j k}.
$$

The Yang-Baxter Equation

Definition

A solution to the set-theoretic Yang-Baxter equation (hereafter simply a solution) is a non-empty set G, together with a map $r : G \times G \rightarrow G \times G$ satisfying

$$
(r \times 1)(1 \times r)(r \times 1) = (1 \times r)(r \times 1)(1 \times r)
$$

as functions on $G \times G \times G$.

Given a solution r on G, for all $x, y \in G$ we write

$$
r(x,y)=(\lambda_x(y),\rho_y(x));
$$

so that we have family of maps $\lambda_x : G \rightarrow G$ and a family of maps $\rho_{\mathsf{v}}: \mathsf{G} \to \mathsf{G}.$

Suppose G with r is a solution and write $r(x, y) = (\lambda_x(y), \rho_y(x))$. We say this solution is:

- \bullet bijective if r is bijective;
- left non-degenerate if λ_x is bijective for all $x \in G$;
- right non-degenerate if ρ_v is bijective for all $y \in G$;
- non-degenerate if r is both left and right non-degenerate.

Example

- The trivial solution $r(x, y) = (x, y)$ is bijective and degenerate.
- The twist solution $r(x, y) = (y, x)$ is bijective and non-degenerate.

Solutions from skew bracoids

Let (G, N) be a skew bracoid that contains a brace (H, N) . We have that the map $a : h \mapsto h \odot e_N$ is a bijection between H and N, we write b for its inverse. Recall that with this we can define

$$
\lambda_{\mathsf{x}}(\mathsf{y}) = \mathsf{b}(\gamma_{\mathsf{x}}(\mathsf{y} \odot \mathsf{e_N}))
$$

and then

$$
\rho_{y}(x)=\lambda_{x}(y)^{-1}xy,
$$

for all $x, y \in G$.

This λ and ρ form a Lu-Yan-Zhu pair so that G with $r(x, y) = (\lambda_x(y), \rho_y(x))$ forms a (right non-degenerate but possibly left degenerate) solution.

Given this setup, we have that

- \bullet H with r is a bijective non-degenerate solution the one coming from the (essentially a) skew brace (H, N) ;
- and restricting to S we have

$$
\lambda_{s_1}(s_2)=b(\gamma_{s_1}(s_2\odot e_N))=e_G, \qquad \rho_{s_2}(s_1)=s_1s_2.
$$

for $s_1, s_2 \in S$, so we get an entirely left degenerate sub-solution.

Consider the subgroup $K = \text{ker}(\mathcal{L}_{\odot})$ of G. Simply restricting to K, we get the relations are the same as in S, meaning K with r is also a solution. But moreover, for $k \in K$ and all $hs \in G$, we have

$$
\lambda_k(hs) = h, \qquad \rho_{hs}(k) = h^{-1}khs,
$$

$$
\lambda_{hs}(k) = e_G, \qquad \rho_k(hs) = hsk.
$$

Almost classical solutions

Suppose (G, N) is almost classical due to a subgroup H of G, i.e. (H, N) is essentially a trivial skew brace.

Taking $h_1, h_2 \in H$ and $s_1, s_2 \in S$, the solution arising from (G, N) is the given by

$$
\lambda_{h_1s_1}(h_2s_2) = b(\gamma_{h_1s_1}(h_2 \odot e_N))
$$

= $b(s_1h_2s_1^{-1} \odot e_N)$
= $s_1h_2s_1^{-1}$,

and

$$
\rho_{h_2s_2}(h_1s_1) = s_1h_2^{-1}s_1^{-1}h_1s_1h_2s_2
$$

= $s_1h_2^{-1}s_1^{-1}h_1s_1h_2s_1^{-1}s_1^{-1}s_1s_2$
= $\lambda_{h_1s_1}(h_2s_2)^{-1}h_1\lambda_{h_1s_1}(h_2s_2)s_1s_2$.

The solution arising from (G, N) contains the solution associated to the trivial skew brace (H, N) . Recall that γ_h is trivial for all $h \in H$ so restricting to H we recover the solution given by

$$
\lambda_{h_1}(h_2)=h_2, \qquad \rho_{h_2}(h_1)=h_2^{-1}h_1h_2,
$$

which is a solution coming from the group H.

Running Example

Example

In our $(G, N) \cong (D_n, C_n)$ example $\lambda_{r^is^j}(r^ks^{\ell})=b(\gamma_{r^is^j}(\eta^k))$ $= b(\eta^{(-1)^j k})$ $= r^{(-1)^j k}.$

From this we get

$$
\rho_{r^k s^{\ell}}(r^i s^j) = \lambda_{r^i s^j} (r^k s^{\ell})^{-1} r^i s^j r^k s^{\ell}
$$

$$
= r^{-(1)^j k} r^{i+(-1)^j k} s^{j+\ell}
$$

$$
= r^i s^{j+\ell}.
$$

Hence $r(r^i s^j, r^k s^\ell) = (r^{(-1)^j k}, r^i s^{j+\ell})$ is a solution.

As we said, if we have a skew bracoid (G, N) that is almost a skew brace (H, N) and a skew bracoid (S, M) that contains a brace (T, M) then we can induce a skew bracoid $(G, N \times M)$ that contains the brace $(HT, N \times M)$.

In the context of solutions this is adding to the non-degenerate piece, and if you like shrinking the (left) degenerate piece. If (S, M) is essentially a skew brace, we would have induced a skew bracoid that was essentially a skew brace and hence get a bijective non-degenerate solution.

Open Questions

- In our induced construction, in some sense, we are taking a product of (H, N) and (S, M) , using the fact that H and S are special subgroups of G in (G, N) to ensure that all the necessarily relations hold. Can we extract what these conditions are in order to generalise it? Is this "just" a special case of a matched product? Can we stop at semi-direct product on the way?
- In the case where the skew bracoid is almost a skew brace, the solution coming from the skew brace it contains should relate somehow nicely with the degenerate piece on S. But nice in what way?
- How is the solution on a skew bracoid related to the solution on its reduced form?

Thank you for your attention!