Almost Classical Skew Bracoids and the Yang-Baxter Equation

Isabel Martin-Lyons

Keele University, UK

The Interplay Between Skew Braces and Hopf-Galois Theory, Exeter 17th of April 2024

Aim

We will explore some concepts from Hopf-Galois theory as they pertain to skew bracoids and solutions to the Yang-Baxter equation.

Let E/K be a finite Galois extension of fields with L some intermediate field, so that L/K is separable but not necessarily Galois. Write $(G, \circ) = \text{Gal}(E/K)$ and S = Gal(E/L).

Recall that Hopf-Galois structures on such extensions correspond to skew bracoids; the Galois group occurs as the multiplicative group and the type is encoded in the additive group.

1 Reminder of Fundamental Definitions and Examples

1 Reminder of Fundamental Definitions and Examples

Definition

A *skew (left) brace* is a triple (G, \star, \circ) , where (G, \star) and (G, \circ) are groups and for all $g, h, f \in G$

$$g \circ (h \star f) = (g \circ h) \star g^{-1} \star (g \circ f).$$

Definition

A skew (left) bracoid is a 5-tuple $(G, \circ, N, \star, \odot)$, where (G, \circ) and (N, \star) are groups and \odot is a transitive action of G on N for which

$$g \odot (\eta \star \mu) = (g \odot \eta) \star (g \odot e_N)^{-1} \star (g \odot \mu),$$

for all $g \in G$ and $\eta, \mu \in N$.

- We will frequently write (G, N, \odot) , or even (G, N), for $(G, \circ, N, \star, \odot)$.
- We will refer to (N, ⋆) as the additive group and (G, ∘) as the multiplicative or acting group.
- Any identity will be denoted *e*, possibly with a subscript.

For example

Examples

- If (G, ◦) is a group then (G, ◦, ◦) and (G, ◦^{op}, ◦) are skew braces, the so-called *trivial* and *almost trivial* skew braces on G.
- Any skew brace (G, ⋆, ∘) can be thought of as a skew bracoid (G, ∘, G, ⋆, ⊙), where ⊙ is simply ∘. If (G, N) is a skew bracoid with Stab_G(e_N) trivial we say that (G, N) is essentially a skew brace, since we can use the bijection g → g ⊙ e_N to transfer the operation in G onto N to give a skew brace on N.
- For any group (G) we have the skew bracoid (G, {e}, ⊙) where of course the action ⊙ is trivial.

Examples

• Let
$$d, n \in \mathbb{N}$$
 such that $d|n$. Take
 $G = \langle r, s \mid r^n = s^2 = e, srs^{-1} = r^{-1} \rangle \cong D_n$ and $N = \langle \eta \rangle \cong C_d$. Then
we get a skew bracoid (G, N, \odot) for \odot given by
 $r^i s^j \odot \eta^k = \eta^{i+(-1)^{j}k}$.

Definition

We say that a skew bracoid (G, N, \odot) is *reduced* if and only if the action \odot of G on N is faithful.

From a Hopf-Galois perspective, this means that the "top" field was really the Galois closure of the one we are interested in.

Proposition

Let (G, N, \odot) be a skew bracoid, and K be the kernel of the map $\mathcal{L}_{\odot} : G \to \operatorname{Hol}(N)$. We can form a skew bracoid $(G/K, N, \odot_K)$ which is reduced and \mathcal{L}_{\odot} and \mathcal{L}_{\odot_K} have the same image in $\operatorname{Hol}(N)$.

Examples

- Any skew bracoid that is essentially a skew brace is reduced since the action of the multiplicative group on the additive is regular and therefore faithful.
- Skew bracoids of the form (G, {e}, ⊙) are not reduced (unless G is itself trivial), since all of G is in K = ker(L_☉).
- In $(G, N) \cong (D_n, C_d)$, we see that (G, N) is reduced if and only if d = n, since $\langle r^d \rangle \subseteq K$ as $r^d \odot \eta^k = \eta^{d+k} = \eta^k$.

Reminder of Fundamental Definitions and Examples

3) The γ -function and solutions to the Yang-Baxter Equation

Definition

We say that a skew bracoid (G, N) contains a brace if the subgroup $S = \text{Stab}_G(e_N)$ has a complement H in G, so that G = HS.

This is equivalent to saying that G contains a subgroup H for which (H, N) is essentially a skew brace.

Definition

A skew bracoid (G, N) is almost a skew brace if the subgroup

 $S = \text{Stab}_G(e_N)$ has a normal complement in G, so that $G = HS \cong H \rtimes S$.

Definition

A skew bracoid (G, N) is almost classical if the subgroup $S = \text{Stab}_G(e_N)$ has a normal complement H in G, and when thought of as a skew brace, (H, N) is trivial.

This is saying that when the operation in H is transferred to N, it coincides with the original operation in N. Explicitly this means, for all $h_1, h_2 \in H$

$$(h_1 \odot e_N)(h_2 \odot e_N) = h_1 h_2 \odot e_N,$$

and consequently

$$(h_1 \odot e_N)^{-1} = h_1^{-1} \odot e_N.$$

Proposition

Let (G, N) be a skew bracoid that contains a brace (resp. is almost a brace, is almost classical), then its reduced form (G/K, N) also contains a brace (resp. is almost a brace, is almost classical).

Intuitively, when we quotient by K we only kill off part of the stabiliser, so our favourite H is preserved and we have (H/K, N) as essentially a skew brace in (G/K, N).

Unfortunately, the converse does not hold in general.

Remark

Let (G, N) be a reduced skew bracoid and suppose that there is some $H \subseteq G$ for which (H, N) is essentially a trivial skew brace, then (G, N) is almost a brace.

- Immediately, we have that H is a complement to S = Stab_G(e_N) since H is regular on N.
- Normality is easiest to see via the holomorph, note that since (G, N) is reduced the map L_☉ is injective. For h ∈ H we have that L_☉(h) coincides with L_{*}(h ⊙ e_N), so L_☉(H) = L_{*}(N) as permutation groups. Then L_{*}(N) is a normal subgroup of Hol(N) and therefore of G embedded into Hol(N). Finally, as G ≅ L_☉(G) we have that H ≅ L_☉(H) = L_{*}(N) is normal in G.

For example

Examples

- When thought of as skew bracoids, every skew brace is almost a skew brace, and every trivial skew brace is almost classical.
- Skew bracoids of the form (G, {e}, ⊙) are almost classical since they contain the brace ({e}, {e}), {e} is normal in G and ({e}, {e}) is certainly trivial.
- Take $(G, N) \cong (D_n, C_n)$, then $S = \langle s \rangle$ since $s^j \odot \eta^0 = \eta^{(-1)^{j} \cdot 0}$ and $r^i \odot e_N = \eta^i$ so it is clear that $(\langle r \rangle, N)$ is trivial. We know $G \cong \langle r \rangle \rtimes \langle s \rangle$, hence (G, N) is almost classical.
- Recall Byott's example (G, N) ≅ (GL₃(𝔽₂), C₂ × C₂ × C₂) which we know to contain a brace, however it cannot be almost a skew brace since G is simple.

Theorem

Let (G, N, \odot_N) be a skew bracoid that is almost a skew brace due to H and write S for $\operatorname{Stab}_G(e_N)$. Suppose we also have a skew bracoid (S, M, \odot_M) . We may take the (external) direct product of N and M and, define

$$hs \odot (\eta, \mu) := (hs \odot_N \eta, s \odot_M \mu)$$

for $h \in H$, $s \in S$ and $(\eta, \mu) \in N \times M$. This \odot is then an action, under which $(G, N \times M, \odot)$ is a skew bracoid.

Observe that to act on the M component, we are using the natural projection of G onto S.

Inducing a skew bracoid that contains a brace

Proposition

Let (G, N) and (S, M) be skew bracoids with $G = HS \cong H \rtimes S$. If (S, M) contains a brace then so does the induced skew bracoid $(G, N \times M)$.

Proof.

Say (S, M) contains the brace (T, M). Then HT is a subgroup of G, and

$$ht \odot (e_N, e_M) = (h \odot_N e_N, t \odot_M e_M).$$
(1)

Note *H* is transitive on *N* and *T* is transitive on *M* so *HT* is transitive on $N \times M$. The right hand side of (1) is (e_N, e_M) if and only if $h = e_G$ and $t = e_G$, since both (H, N) and (T, M) are essentially skew braces. Hence $(HT, N \times M)$ is essentially a skew brace and $(G, N \times M)$ contains a brace.

Reminder of Fundamental Definitions and Examples

2 Almost classical skew bracoids

3 The γ -function and solutions to the Yang-Baxter Equation

The $\gamma\text{-function}$

Definition/Proposition

Given a skew bracoid $(G, \circ, N, \star, \odot)$, we define the map $\gamma : (G, \circ) \rightarrow \operatorname{Perm}(N, \star)$, sending g to γ_g , by

$$\gamma_{g}(\eta) = (g \odot e_{N})^{-1} \star (g \odot \eta),$$

for $g \in G$ and $\eta \in N$.

Then γ is in fact a homomorphism, with image in Aut(N, \star). We call this map the γ -function of the skew bracoid.

Recall that this is the backbone of the route from a skew bracoid to a solution to the Yang-Baxter equation.

The γ -function of an almost classical skew bracoid

Let (G, N) be an almost classical skew bracoid with H such that $G \cong H \rtimes S$ and (H, N) is essentially a trivial skew brace.

Let $h \in H$ and $s \in S$, and $\eta = h_\eta \odot e_N \in N$ then,

$$\begin{split} \gamma_{hs}(\eta) &= (hs \odot e_N)^{-1} \star (hs \odot \eta) \\ &= (h \odot e_N)^{-1} \star (hsh_\eta \odot e_N) \\ &= (h^{-1} \odot e_N) \star (hsh_\eta s^{-1} \odot e_N) \\ &= sh_\eta s^{-1} \odot e_N. \end{split}$$

So we conjugate by the S part and the H part acts trivially.

Example

In the
$$G = \langle r, s \rangle \cong D_n$$
 acting on $N = \langle \eta \rangle \cong C_n$ example we have $\gamma_{r^i s^j}(\eta^k) = s^j r^k s^{-j} \odot e_N = \eta^{(-1)^j k}$.

The Yang-Baxter Equation

Definition

A solution to the set-theoretic Yang-Baxter equation (hereafter simply a solution) is a non-empty set G, together with a map $r : G \times G \to G \times G$ satisfying

$$(r \times 1)(1 \times r)(r \times 1) = (1 \times r)(r \times 1)(1 \times r)$$

as functions on $G \times G \times G$.

Given a solution r on G, for all $x, y \in G$ we write

$$r(x,y) = (\lambda_x(y), \rho_y(x));$$

so that we have family of maps $\lambda_x : G \to G$ and a family of maps $\rho_y : G \to G$.

Suppose G with r is a solution and write $r(x, y) = (\lambda_x(y), \rho_y(x))$. We say this solution is:

- *bijective* if *r* is bijective;
- *left non-degenerate* if λ_x is bijective for all $x \in G$;
- right non-degenerate if ρ_y is bijective for all $y \in G$;
- *non-degenerate* if *r* is both left and right non-degenerate.

Example

- The trivial solution r(x, y) = (x, y) is bijective and degenerate.
- The twist solution r(x, y) = (y, x) is bijective and non-degenerate.

Solutions from skew bracoids

Let (G, N) be a skew bracoid that contains a brace (H, N). We have that the map $a : h \mapsto h \odot e_N$ is a bijection between H and N, we write b for its inverse. Recall that with this we can define

$$\lambda_x(y) = b(\gamma_x(y \odot e_N))$$

and then

$$\rho_y(x) = \lambda_x(y)^{-1} x y,$$

for all $x, y \in G$.

This λ and ρ form a Lu-Yan-Zhu pair so that G with $r(x, y) = (\lambda_x(y), \rho_y(x))$ forms a (right non-degenerate but possibly left degenerate) solution.

Given this setup, we have that

- *H* with *r* is a bijective non-degenerate solution the one coming from the (essentially a) skew brace (*H*, *N*);
- and restricting to S we have

$$\lambda_{s_1}(s_2) = b(\gamma_{s_1}(s_2 \odot e_N)) = e_G, \qquad \rho_{s_2}(s_1) = s_1 s_2.$$

for $s_1, s_2 \in S$, so we get an entirely left degenerate sub-solution.

Consider the subgroup $K = \ker(\mathcal{L}_{\odot})$ of *G*. Simply restricting to *K*, we get the relations are the same as in *S*, meaning *K* with *r* is also a solution. But moreover, for $k \in K$ and all $hs \in G$, we have

$$\lambda_k(hs) = h,$$
 $\rho_{hs}(k) = h^{-1}khs,$
 $\lambda_{hs}(k) = e_G,$ $\rho_k(hs) = hsk.$

Almost classical solutions

Suppose (G, N) is almost classical due to a subgroup H of G, i.e. (H, N) is essentially a trivial skew brace.

Taking $h_1, h_2 \in H$ and $s_1, s_2 \in S$, the solution arising from (G, N) is the given by

$$egin{aligned} \lambda_{h_1 s_1}(h_2 s_2) &= b(\gamma_{h_1 s_1}(h_2 \odot e_N)) \ &= b(s_1 h_2 s_1^{-1} \odot e_N) \ &= s_1 h_2 s_1^{-1}, \end{aligned}$$

and

$$\rho_{h_2 s_2}(h_1 s_1) = s_1 h_2^{-1} s_1^{-1} h_1 s_1 h_2 s_2$$

= $s_1 h_2^{-1} s_1^{-1} h_1 s_1 h_2 s_1^{-1} s_1^{-1} s_1 s_2$
= $\lambda_{h_1 s_1} (h_2 s_2)^{-1} h_1 \lambda_{h_1 s_1} (h_2 s_2) s_1 s_2$.

The solution arising from (G, N) contains the solution associated to the trivial skew brace (H, N). Recall that γ_h is trivial for all $h \in H$ so restricting to H we recover the solution given by

$$\lambda_{h_1}(h_2) = h_2, \qquad \rho_{h_2}(h_1) = h_2^{-1}h_1h_2,$$

which is a solution coming from the group H.

Running Example

Example

In our $(G, N) \cong (D_n, C_n)$ example $\lambda_{r^i s^j}(r^k s^\ell) = b(\gamma_{r^i s^j}(\eta^k))$ $= b(\eta^{(-1)^j k})$ $= r^{(-1)^j k}.$

From this we get

$$\rho_{r^k s^\ell}(r^i s^j) = \lambda_{r^i s^j}(r^k s^\ell)^{-1} r^i s^j r^k s^\ell$$
$$= r^{-(-1)^{jk}} r^{i+(-1)^{jk}} s^{j+\ell}$$
$$= r^i s^{j+\ell}.$$

Hence $r(r^i s^j, r^k s^\ell) = (r^{(-1)^j k}, r^i s^{j+\ell})$ is a solution.

As we said, if we have a skew bracoid (G, N) that is almost a skew brace (H, N) and a skew bracoid (S, M) that contains a brace (T, M) then we can induce a skew bracoid $(G, N \times M)$ that contains the brace $(HT, N \times M)$.

In the context of solutions this is adding to the non-degenerate piece, and if you like shrinking the (left) degenerate piece. If (S, M) is essentially a skew brace, we would have induced a skew bracoid that was essentially a skew brace and hence get a bijective non-degenerate solution.

Open Questions

- In our induced construction, in some sense, we are taking a product of (H, N) and (S, M), using the fact that H and S are special subgroups of G in (G, N) to ensure that all the necessarily relations hold. Can we extract what these conditions are in order to generalise it? Is this "just" a special case of a matched product? Can we stop at semi-direct product on the way?
- In the case where the skew bracoid is almost a skew brace, the solution coming from the skew brace it contains should relate somehow nicely with the degenerate piece on *S*. But nice in what way?
- How is the solution on a skew bracoid related to the solution on its reduced form?

Thank you for your attention!